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THE SIMILARITY RULES FOR SECOND-ORDER SUBSONIC AND SUPERSONIC FLOW !

By Muuron D. Vax Dygs

SUMMARY

The similarity rules for linearized compressible flow theory
(Githert’s rule and its supersonic counterpart) are extended to
second order. It is shown that any second-order subsonic flow
can be related to ““nearly incompressible” flow past the same
body, which can be calculated by the Janzen-Rayleigh method.

INTRODUCTION

The linearized small-disturbance theory of steady com-
pressible flow, based on the Prandtl-Glauert equation, yields
o first approximation for thin objects moving at either sub-
sonic or supersonic speeds. More precisely, it provides the
first term ip an asymptotic expansion of the solution for
small disturbances, provided that the flight Mach number
is not too close either to unity (transonic flow) or to infinity
(hypersonic flow).

The similarity rule that governs linearized subsonic flow
past general three-dimensional objects was first given cor-
rectly by Gothert (ref, 1).
supersonic flow, and the rules have rendered great service in
both theoretlcal and experimental investigations.

Recently, various investigators have sought to improve
on the linearized theory by finding higher approximations
(seo, o.g., vefs. 2 to 5). The second step is commonly
referred to as the second-order small-disturbance theory, or
simply “second-order theory.” It can be found in general
by iterating upon the linearized solution, retaining all terms
out, of the full nonlinear equations of motion whose contri-
bution is of the order of the square of the disturbances in
linearized theory (ref. 3). In the simplest case of plane
flow without stagnation points, the linearized disturbances
are proportional to the thickness ratio = of the airfoil, so that
second-order theory adds terms in 7%, and higher approxi-
mations extend the series in powers of 7*. Stagnation points
lead to the appearance of logarithmic terms, beginning with
7n 7 in the fourth approximation. The series diverges in
the immediate vicinity of stagnation points, although it can
be corrected there by simple techniques (ref. 6). Slender
pointed objects, such as a smooth body of revolution, cause
smaller disturbances than airfoils, but logarithmic terms
always arise at the outset; hence the linearized solution
contains terms of order Tzln + and 7%, and the second-order
increment then consists of terms of order w*In*r, r{ln =, and
Nothing is known of the convergence of these series; they
are perhaps only asymptotic expansions for small thickness.
Second-order theory, like linearized theory, breaks down in
the transonic and hypersonic ranges, though it may pene-
trate somewhat farther into their fringes.

3 Bupersedes NACA TN 3875, by Milton D. Van Dyke, 1957.

It has an obvious counterpart in

A similarity rule for second-order theory has recently
been given in the special case of supersonic flow past thin
flat wings by Fenain and Germain, who demonsfrate its
usefulness in theoretical studies (ref. 5). However, as in
linearized theory, the rules for flat wings are only special
cases of those for general three-dimensional shapes. The
present paper is devoted to deducing the general rules for
subsonic and supersonic flows, and examining their implica-
tions. In particular, it is shown how the rule for subsonic
flow relates the second-order solution for any object to nearly
incompressible flow past the same body, which can be calcu-
lated by the Janzen-Rayleigh method.

The author is indebted to Wallace D. Hayes for suggesting
several improvements that have been incorporated in the
present version of this paper. In particular, the procedure

.for recovering the second-order solution from the Janzen-

Rayleigh solution (p. 930) is simpler and more logical than
that originally given in NACA TN 3875.

DERIVATION OF RUI;ES FOR BODIES OF REVOLUTION

A body of revolution is the simplest shape that is not a
special case, but displays the full generality of the existing
similarity rules for subsonie, supersonic, transonic, and hy-
personic flows. The same can be shown to be true of the
second-order rules to be discussed here. Hence for clarity
of exposition, the second-order rules will be derived in
detail only for an axisymmetric body at zero angle of
attack. The rules for general three-dimensional thin or
slender objects will thereafter be stated without proof. The
subsonic and supersonic cases are so similar that they can
be treated simultaneously.

Let the body be described by r=7R(z), where 7 is a thick-
ness parameter or characteristic slope (say, the maximum
slope, average slope, thickness ratio, or the like), and RF(z)
is a function of order unity (fg. 1). As usual in similarity
analysis, the characteristic slope = is regarded as a parameter,
so that different values of + correspond to affinely related
members of the same family of bodies.

1 r-'l’=TR(X)

Ticore 1.—Notation for body of revolution.
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To second order the flow is irrotational, so that there
exists a velocity potential ®(z, r; M, v, 7). This notation
indicates that for each family of bodies (associated with a
given function R(z)), the flow field is regarded as depending
not only upon the two independent variables z and r but
also upon the three parameters following the semicolon:

M free-stream Mach number
v adiabatic exponent of gas ®
=  characteristic slope of body

The aim of a similarity analysis is to transform the prob-
lem so as to reduce the number of parameters appearing in
it. If that can be accomplished, flows having different
values of the original parameters are related provided only
that the reduced parameters are equal. The transforma-
tion to be used here consists in separating the dependent
variable @ into several components, and then stretching
each component and the independent variables by factors
that depend upon the original parameters. It is convenient,
and involves no loss of generality, to leave streamwise
coordinates unchanged, so that r is to be stretched but not z.

Perturbation potentials are first introduced by setting

P .

U—m=$+¢+¢+ “ee @
where ¢ is the potential of linearized theory, and ¢ the
second-order increment.

RULES FOR LINEARIZED THEORY

The linearized problem is

Oe= (1 —l‘l’) ¢1:r+ by qu =0

0 at infinity -
&=7R'(x) atr=7R(z)

@

The first relation is the linearized Prandtl-Glauert equation.
The second is a statement, sufficiently definite for present
purposes, of the requirement that the flow approach a uni-
form stream far from the body in almost all directions. The
third is the linearized condition of tangent flow at the body
surface.® The linearized problem is seen not to involve v,
so that the solution depends upon only the two parameters
Af and 1.

The similarity rules can be obtained by considering arbi-
trary scale transformations of ¢ and ». It is readily found
that the only choice that reduces the number of parameters

* Hayes has pointed out (ref. 7) that to second order an imperfect gas corresponds to a
polytropic gas having a v equal to the free-stream value of

2 bnc) _lul_l__(bap)

where ¢ is the speed of sound and p the density, the partlal derivative being taken at constant
entropy &.

3 In what is generally called the slender-body approximation, the body Is assumed to be
50 smooth and slender that the tangency conditlon can be Imposed on the axis rather than
on the actual surface, for bodies of revolution in the form lim ré=rR(@R'(z). Thus

™
slender-body theory s a further approximatioy within linearized theory (being, in fact, the
leading term in the asymptotic expansion of the linearlzed solutton for small thickness ).
Consequently, the slender-body solutlon obeys the similarity rules of linearized theory, and

he sccond-order slender-body solution likewlss obeys the second-order similarity rules.
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from two to one is (temporarily suppressing the dependence
on parameters)

. $(z,7)= —F (2,0) (3a)
and .
p=pr (3b)
where
5 J1—M? for subsonic flow (30)
= 3e¢
VM?32—1 for supersonic flow
Then the problem becomes
AFEF,,,+%:I:F,,=O
F0 at infinity )
F,=prR'(x) at p=p7R(2)

where here and later the upper and lower signs apply,

respectively, to the subsonic and supersonic problems.

The transformations of ¢ and » have been so chosen that
the problem is reduced to one involving the two parameters
M and + not separately, but only in the combination Br.
This is the similarity parameter. Two subsonic or super-
sonic flows past bodies of the same family are related if
the correspondmg Mach numbers are such that the param-

" eter Bt is the same for both The nature of the relationship
* is found by reintroducing the dependence on parameters

into equation (3a), which gives the similarity rules

$ar; M, )= P, r; ) Q
SECOND-ORDER RULES
The seéond—order problem is found to be (ref. 3)
DOe=*{[(r+1)M*+2(0—M)]b:$z+2rbzr+ b e}
=0 at infinity (6)
er=1¢. R’ (2) at r=7L(x)

Note that the first equation contains not only quadratic
terms on the right-hand side, but also the triple produet
¢.2¢,, whose contribution is of second order in some cases.

The parameter v appears only linearly in the combination
(v+1) and can accordingly be separated out. Thus the
appropriate transformation is found to be

o,y =5 [ o, )+, 0)+ (141) 2 futaro) |

Then equating like powers of M? yields the following set of
three problems for fi,f2,fs in which the parameters My,r
appear again only in the form of the single sumliu'lty param-
eter Sr:

Af 1=
fi—0 at infinity (8a)
fi=6rE.R'(z)  at p=PprR(z)
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Af2= :I:zeFz+2FpF:p+Fp2Fpp

fa—0 at infinity (8b)
Jar=0 at p=p7E(2)
Afy=FF,,
fi—0 at infinity (8c)
f=0  at p=BrR(z)

Then reintroducing the explicit dependence on parameters
into the functions f,,f,,f; of equation (7) gives the similarity
rules for the second-order increment in perturbation po-
tential: \

ol Mipy,r) ==, [fl(x,ﬁr, Br) M3 )+(v+1) * >] ©

where the arguments of f; and f; are the same as those of
fi. Hereafter the arguments of later terms will be omitted
in this fashion when they are the same as for the leading
term. It should be emphasized that, just as in linearized
theory, the subsonic and supersonic rules are quite distinet,
although they have the same form (9). Because of the
different definitions of 8, and the resulting 4 signs in equa-
tions (4) and (8b), a supersonic flow is not related to a sub-
gonic flow. Discussion of these results is deferred to the
general case.

RULES FOR GENERAL BODIES

Consider a family of general three-dimensional bodies,
whose members are derived from'one another by 2 umform
magnification or reduction of all dimensions normal to the
free stream (fig. 2). Each member of such a family can be
characterized, as before, by some characteristic slope 7. It
may be emphasized that 7 can be identified with thickness,
camber, or angle of attack, all of which vary together for

related bodles

I'raure 2.—Example of two related bodies.

The preceding analysis can be extended in a straight-
forward way to such general bodies, at the expense only of
typographic complexity. Both cross-stream dimensions
behave in the way that r did before. Hence the subsonic
and supersonic second-order rules for the velocity potential,
corresponding to equations (5) -and (9), are, in Cartesian
coordinates:

<I>(a:,y,z My,r)= :H? F(z,8y,B2; Br)+
i [ o,z 80 +2HO) + k) 2 1 )] (10a)

Differentiation yields the corresponding rules for velocity
components (those for w having the same form as for v):

U%=1%U(x,ﬁy,62;ﬁr)+

1 . g

" ul(x,ﬁy,ﬁz,ﬂr)fM%()+(7+1)Fﬂa():| (10b)
ULW=% V(I,ﬁ’_l/, ﬁZ;ﬁT) +

[ ey pes)+ MmO+t 2 w() | 100

(The functions appearing here are actually related to deriva-
tives of the functions in equation (10a), but the connection
is of little interest.) To second order the pressure coefficient
is given by

0p= —2¢x_ (d’v’"]’ ‘i’xa) —2¢:_2(¢1%+¢1¢z) _]_ (M_l) ¢=2+
M2¢.($s* o) + 3836, 1+ 7)?

where the terms in the second line may be significant for
slender shapes. Substituting the expressions (10) for veloc-
ity components and simplifying shows that the similitude for
pressure coefficient has the same form as that for the stream-
wise velocity increment Au/U.,: :

Oﬁ(x)y)z;M;'Y) T) =‘;‘2:P(1,13y;132;ﬁ7') %[Pl(x:ﬁyi ﬁz; ﬂf)'l‘

MO+a+D () | (10)

The similarity rules for the perturbation stream function
in plane flow are the same as those for v/U. (eq. (10c)).

ALTERNATIVE FORMS

As with other similarity rules, an unlimited number of
alternative forms can be produced by multiplying by powers
of the similarity parameter. Thus, of the many possible
alternatives to the second-order rules (10d) for pressure
coefficient, two of the most useful are:

CymiPla, by, 62:87)+ | BOFMBO+0AD 250 |
(10e)

OB, 2380) + | BOHMBO+6+D T B0 |
(10)
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In addition, the first two second-order terms can be manip-
ulated, using the connection between M? and B, to yield
additional alternative forms such as the following, which
correspond to the three forms above:

Cim P (a,60,82:m) 5] BO+ 2 O+ 64D e 210) | |
(10g

0,=§P(x,ﬁy,ﬁz;ﬁr)+r’[z—h()—I—%‘gf’z'()‘l‘(’)’-l-l)%f’a()]h)
(10

CymrBla,y, 82360 ++4 #BO+5 O+ 4D 5.0 |

: (10i)
FORCE COEFFICIENTS

The rules for pressure imply rules for the lift and drag
coefficients. For example, equation (10e) leads to

T e 2 M+
Cu@1,r)=5 L)+ | L)+ +6-+D) z?;g
- 10y

CoM1;r) =5 D@+ | duor) +D00s8m) +or+1) %dawr)]
(10K)

if the coefficients are referred to some plan-form area. If -

some cross-sectional area is used, each term is reduced by one
power of . Various alternative forms are again useful. In
the case of lift coefficient, one will ordinarily choose to
identify = with the angle of attack.

RULES FOR QUASI-CYLINDRICAL BODIES

A special class of objects must be distinguished, which will
be termed quasi-cylindrical bbdies. These are shapes that
lie everywhere so close to some cylinder (not necessarily
circular) parallel to the free stream that to a first approxi-
mation the condition of tangent flow can be imposed at the
cylinder rather than on the actual body surface. Likewise,
in second-order theory the tangency condition can be trans-
ferred to the cylinder by Taylor series expansion. The sim-
plest example is an airfoil whose thickness, camber, and angle
of attack are so small that the tangency condition can be
transferred from the airfoil surface to a mean plane parallel
to the stream (fig. 3). Another example is an open-nosed

/L L LY

<z =\ =
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body of revolution whose radius varies only slightly. Others
are biplanes, cruciform wings, any of these in an open or
closed wind tunnel, in combination with one another, etc.

A quasi-cylindrical body can be regarded s consisting of
a skeleton upon which is superimposed a small slope distri-
bution. The skeleton is simply the projection of the body
onto the basic cylinder. For example, the skeleton of the
quasi-cylindrical body of revolution is the circular tube
shown dashed in figure 3. '

The special place of quasi-cylindrical bodies in similarity
theory arises from the fact that the skeleton and the slope
distribution can be varied independently. This extra
freedom is important. For example, it leads to & useful
transonic similarity rule for quasi-cylindrical bodies whereas
none exists for general shapes. It is convenient always to
leave streamwise dimensions unaltered. Hence, we consider
families of quasi-cylindrical bodies that are derived from
one another by a lateral compression or expansion of the
skeleton, and a quite independent magnification or reduction
of all surface slopes. Two members of such & family are
shown in figure 4.

Fiaure 4.—Example of two related quasi-oylindrical bodies.

Distortions of the skeleton will be measured by some
characteristic “aspect ratio” A. It is important to note
that the term ‘“‘aspect ratio” is used here in & very general
sense to mean any typical ratio of gross cross stream to
streamwise dimensions. For example, in the last shape
in figure 3, the ratio of wind-tunnel height to airfoil chord is
an appropriate characteristic aspect ratio. Changes of
slope are measured, as before, by some characteristic slope .

The preceding similarity rules can be simplified for quasi-
cylindrical bodies by using the facts that first-order per-
turbation quantities are directly proportional* to =, and
second-order terms to 7*. The simplification can be carried
out by first imagining the quasi-cylindrical body to be
restricted to be a general body, which means that both
BA and Br must be the same for similarity. Then consider
the preceding rules in the particular alternative forms in
which = appears explicitly outside the first-order term and

7777777
FiacurE 3.—Examples of quasi-cylindrical bodies.

4 This s by no means true for general bodies; as noted previously, the first-order pressuro
coofficlent on a smooth slender pointed body of revolution varies as #3n » for small r.
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7* outside the second-order terms. For the pressure co-
efficient, this form is that of equation (10e):

0= Pl s 840 + 50 BOHMBO+ 040 250 |

So far the functions P,7,,7,,9; have been supposed to depend
parametrically upon both B4 and gr. However, the first-
and second-order terms can be proportional to = and 7,
respectively, only if the supposed dependence upon fr is
nonexistent. Hence, the similarity parameter is B4 alone,
and the rules for pressure are (dropping bars from the
functional symbols):

2
Oy, M, Y, 7, 4) =7 P (e, B, B2 BA) + 15 | 1(e, By, 23 5A)+

MO +0+0 22 50 | (11a)

The corresponding rules for the potential and velocity
components can, if desired, be written down by inspection
from equations (10).

With §,=p;4p, (where, as before, the upper sign applies
to subsonic and the lower to supersonic flow), these rules can
be rewritten as

O[O+ My
=2 PO++[ O+ BO+0+D om0 | @1

and this is the result that Fenain and Germain found in their
treatment of the flat diamond cone in supersonic flow (ref. 5).

CONNECTION WITH HAYES' RULE

For plane flow past 2 single body, Hayes has discovered a
remarkable rule for the second-order surface pressure (ref. 7).
It implies that, on the surface, the functions in equation
(11a) are such that p;=0 and p,=4p;. Hence,

(v+1) M44-4(1—M%)
4(1—M?*

Cp =g P@)+* m@) (19
In supersonic flow this is simply Busemann’s well-known
second-order solution, P being twice the local slope of the
surface and p, twice its square; in subsonic flow P and p, are
more complicated (ref. 8). Thisrule implies a corresponding,
but more complicated, rule for surface velocity (ref. 8).

In addition to the restriction to single bodies and plane
flow, these rules are not similarity rules in the sense of the
preceding results, because they apply only at the surface
rather than throughout the field.

EXAMPLES

The rules will be illustrated by two simple examples, at-
tention being confined to the surface pressure coefficient.

SLENDER CIRCULAR CONE IN SUPERSONIC FLOW

Broderick has derived the second-order slender-body

solution for a circular cone at zero angle in a supersonic
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stream. (ref. 2).
of slope 7 is

0,;=T’ (2 In 3—1>+T4 [352 (zn 3.)’_
M

EM—) 22U ) | 09

The surface pressure coefficient on 2 cone

This has the form of equation (10i) with

z 2 T 2,15
P—2l’nﬁ_’_ 1 P = 4:l7l/ﬁ1_-|—4

i} 2 2 )
Bi=3 It =5 In E+1—3 Pe=1

WAYY WALL IN CLOSED SUBSONIC WIND TUNNEL

Consider the sinusoidal wall y=r sin x at a distance A from
a flat wall (or a distance 2% from its mirror image) as indi-
cated in figure 5. Subsonic flow between the walls at a mean

R
b 4 smx
A
A

. PN _
7 Nt Nt

Fraore 5.—Wavy wall in wind tunnel

Mach number M can be readily calculated to second order
by separation of variables. The resulting pressure coeffi-
cient on the surface of the wayy wall is

27 142 (1) M+4(1—D12)
Cr=—F T—e =+ gy
1-4-4e—38n | g—i6t —~ogh
-i(i% cos 2x—272 .(—1_'8?6:'@_)2-!_
M4 Bhe— &
. 2(v+1) ey T2 T (= cos 2z (14)

The relevant aspect ratio is the height % (which is really a
multiple of the height-chord ratio, because of the choice of
scale for the wavy wall). Thus the resulf is seen to have the
similitude of equation (11a). As the tunnel height increases
indefinitely, the last two terms disappear, and the remainder
follows the similitude of equation (12) for the surface of a
single plane body.
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REDUCTION OF SUBSONIC PROBLEM TO NEARLY INCOM-
PRESSIBLE FLOW

In linearized theory, an important application of the
similitude is Géthert’s rule, which reduces any subsonic flow
problem to a related incompressible flow (réf. 1). As the
rule is usually stated, the incompressible flow is that past a
thinner affinely related body. However, the incompressible
solution for one member of an affinely related family of bodies
determines that for all other members, so that the subsonic
flow may, if desired, be related to the same body rather than
a thinner one, and that viewpoint will be adopted here as
being the simplest.

In second-order theory, the explicit appearance of terms in
A2 and (v+1)A£L* in equations (10) means that reduction to
an incompressible problem is impossible (except for the
special case of the surface of a single plane body, where eq.
(12) applies). The second-order problem can, however, be
reduced to a nearly incompressible flow.

Flows at low Mach numbers can be calculated by the
Janzen-Rayleigh method, which involves iterating on the
incompressible solution to obtain a power series in Jf2
Thus the velocity potential is approximated by

- B 0,2;M,%,7) = Bo(2,9,27)H M1 ,,257) +

(r+1)MA®,( ) M@, ( )+ ... (15a)
The two terms in Af* are ordinarily considered together,
but for present purposes it is essential to separate them
because only &, is required. This is fortunate because ®,
can be calculated almost as easily as &;, whereas the deter-
mination of ®; i8 much more difficult.

The small-disturbance and Janzen-Rayleigh series repre-
sent two different asymptotic expansions of the actual solu-
tion. They are believed to complement each other, so that
an expansion of the Janzen-Rayleigh solution for small
thickness must be identical with the expansion of the small-
disturbance solution in powers of A% as has been verified
in all worked examples. This fact permits the small-dis-
turbance solution to be recovered from the Janzen-Rayleigh
series. The converse is not true, however, except for bodies
without stagnation points, because the small-disburbance
expansion is not uniformly valid near a stagnation point.

PROCEDURE FOR RECOVERING SECOND-ORDER SOLUTION
Another alternative form for the second-order velocity po-
tential of equation (10a), which is useful here, is
Ul— @ ((lf,'_l/, 2:-’1{:77 T) =:c+r’F(a:,ﬁy,Bz; BT) +

M2 M*
=[O+ 20+ 310 |
aop

(Here F and fy, 12, f3 are not the same functions as in equa-
tion (10a) but related ones; in the notation of equations

(10h) and (10i) they are actually  and %, %, 75.)
For present purposesitis unnecessary to distinguish between
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the first-order term F and the second-order increment fi;
combining them as F1=F+f1 gives

&—U.z

Bt P )+ O+ 0D E KO om)

The Janzen~Ra,yleigh solution is now to be manipulated
into this same form. The first three terms as given in equa-
tion (15a) are equivalent to

T ‘f’(-%?/:z 'M’YJT) ‘i’o(-'ﬂ;’.'!;z T)+

U ‘I’l()+

o1 22 ¢z<)+o( ) asb)

which may be rewritten as

U,z N MR M M*
2t ey mn e 0O+ 22 O+ (B)
(15¢)
with
(b()_ﬂ:ﬁ
T
=2 b (15d)
2,
o= |

Finally, with the aid of
' : 1M, /M
y=By/ 1+ =R [H—z T °(F>] (16)

and corresponding expansions for z and =, this may be
re-expressed as

»—U

—ﬁ_‘rg—'—%(z By, Bz; ﬁ‘f)-l— 901( )+ %p,( )+

o5 e >]+(7+1) YO (50

which is the desired form. Here, for example, ¢, (x,8y,62; B7)
means (O/0y)wo(x,y,2; 7) evaluated at z=z, y=By, z=H2,
and r=pr.

The second-order solution is thus recovered from the
Janzen-Rayleigh approximation simply by calculating in
turn the expressions in equations (15d) and (15e). The
procedure can actually be expressed by a single equation
as follows. From the Janzen-Rayleigh approximation in the
form of equation (15a), the second-order small-disturbance
solution is recovered accordmg to

-—‘—fc-l- {@o(:c,y,z r)—a: M2 <I>1 . y(@o >

(e e 8}

'r-)ﬁr

where ®, means ®,(z,2;7) throughout, and subscripts
indicate differentiation.
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APPLICATION TO PARABOLA

As an example, consider plane subsonic flow at zero angle
of attack past the parabola described by y=r+= (fig. 6).
y

l yrT X

Un

Fiaure 6.—Parabola at zero angle of attack.

The Janzen-Rayleigh solution including terms in (y-+1)34*
has been calculated by Imai (ref. 9). Although the velocity
potential is complicated, it simplifies when only second-
order terms in 7 are retained to

P

_—I+Tﬂ+—MTU E”l‘ﬂg §M’T’l

T« s’+1f>*+’“?+f]+

Here £, are parabolic coordinates related to the Cartesian
coordinates by

| (a=3 )+ |=tein®
so that to second order
2£’=W+x}
2pP=+/ayt—2

In this case the expressions given by equation (15d) are
A

(18a)

(18b)

¢0=Z"
T

‘pl:él}ﬂ g{; 21) Hin E’-l—n]

(18¢)

Y

=g | 4t

This example illustrates the fact that for planar systems
these terms are not of order unity in 7. Then according to
equation (15e) the second-order small-disturbance solution is

lM 247
go=tgig ( Fotie ﬁ’r’)
y+1 M* T e i
A [ cEats S
where
2?‘=J5’T-W+x} (19b)
o=V By~

This result is of interest because it apparently cannot be
found directly. Plane small-disturbance flows can be calcu-
lated easily if one adopts the thin-airfoil approximation of
transferring the boundary conditions to the line y=0 by
Taylor series expansion, but that approximation fails near
round noses in the second approximation and, as a con-
sequence, divergent integrals arise (ref. 8). Instead, one
can try to treat the round nose more carefully using con-
formal mapping (cf. ref. 11, pp. 361-367), but the result is
found to be indeterminate to the extent of a multiple of
ln(E”+_’) This is the potential of a point source at the
origin, which is an eigensolution, the proper multiple of
which (appearing in eq. (19a)) is not determined by the
suggested method.

The second-order increment in equatmn (]9&) 1S seen
to include terms in +*In r, whose function is to render the
argument of the loga.rij:hm dimensionless. However, these
terms are simply constants, so that no logarithms of thick-
ness appear in the actual flow quantities such as velocity
and pressure. Asremarked in the introduction, logarithmic
terms in thickness arise in the actual flow disturbances only
in the fourth approximation.

The second-order small-disturbance solution for the stream
function ecan in the same way be extracted from Imai’s
Janzen-Rayleigh solution, and the result is found to agree
with that calculated directly by Kaplan (ref. 10) using con-
formal mapping. It contains no terms in In 7. (The direct

-approach succeeds for the stream function, although it fails

for the velocity potential, because the tangency condition

| is imposed on the mass flux, which is affected by the above

eigensolution.) Then using the connections between the
stream function and velocity potential, one can verify the
correctness of equations (19).

CONCLUDING REMARKS
UTILITY OF THE RULES

The second-order rules are scarcely suited for correlating
experimental data, since tests on four related bodies would
be needed in order to isolate the four functions involved.
That they are, however, useful in theoretical analyses has
already been pointed out by Fenain and Germain in the
special case of supersonic flow past flat wings (ref. 5). Pre-
vious investigators had calculated (erroneously, as it turns
out) the second-order solution for the flat diamond cone
shown in figure 7, and carried out numerical computations

AN

Ficure 7.—Flat diamond cone.
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for three different Mach numbers and four values of the
parameter B tan A (reported in ref. 11). Because the latter
is the similarity parameter SA of equations (11), failure to
talte advantage of the similitude resulted in three fold un-
necessary duplication of computing labor.

The reduction to nearly incompressible flow assumes im-
portance for bodies with stagnation points. The small-
disturbance assumption is violated, and, as was noted in
the example of the parabola, the second-order solution
consequently cannot be found directly. For bodies of
revolution the difficulties appear to be even more severe.
In such cases it is convenient to calculate the Janzen-Ray-
lIeigh solution, and from it extract the true second-order
solution by the procedure outlined above. This process
has been carried out for the paraboloid of revolution in
reference 12.

NONUNIFORMITY IN SUPERSONIC FLOW

It should be noted that in supersonic flow the similarity
rules may fail in localized regions. Shock waves or expan-
sion fans spring from corners and edges, and in their vicinity
the formal interation procedure is not uniformly valid. The
similarity rules for surface pressure fail locally when such
waves intersect other parts of the body, as in the case of a
triangular wing with leading edges ahead of the Mach cone.
The rules for integrated lift and drag are correct to first
order, but may be in error in second-order terms. These
difficulties can in principle be eliminated by straining the
coordinates according to Lighthill’s technique (ref. 13).

FURTHER EXTENSIONS

The similarity rules can readily be extended to third and
higher order in the same fashion (except for additional com-
plications in supersonic flow because of the ultimate appear-
ance of significant vorticity engendered by curved shock
waves). The similarity parameter remains unchanged; the
complexity arising in a proliferation of functions multiplied
by powers of (y-+1)™1£?"87%?, Likewise, the small-disturb-
ance solution to any order can be recovered from the nearly
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incompressible solution provided by an appropriate number
of terms of the Janzen-Rayleigh solution.
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